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Abstract:  15 

Generating realistic virtual patients from a limited amount of patient data is one of the major challenges 16 

for quantitative systems pharmacology modeling in immuno-oncology. Quantitative systems 17 

pharmacology (QSP) is a mathematical modeling methodology that integrates mechanistic knowledge of 18 

biological systems to investigate dynamics in a whole system during disease progression and drug 19 

treatment. In the present analysis, we parameterized our previously published QSP model of the cancer-20 

immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict 21 

clinical response to PD-L1 inhibition in NSCLC. The virtual patient generation was guided by 22 

immunogenomic data from iAtlas portal and population pharmacokinetic data of durvalumab, a PD-L1 23 

inhibitor. With virtual patients generated following the immunogenomic data distribution, our model 24 

predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified 25 

CD8/Treg ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational 26 

burden. We demonstrated that omics data served as a reliable resource for virtual patient generation 27 

techniques in immuno-oncology using QSP models. 28 

 29 

 30 

INTRODUCTION 31 

Lung cancer is the top leading cause of cancer death in the U.S. with 130,180 estimated deaths in 2022 (1). 32 

Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer, which accounts for 33 

about 84% of total lung cancer cases (2). Since 2015, immune checkpoint inhibitors targeting 34 

programmed cell death protein (death-ligand) 1 [PD-(L)1] and cytotoxic T-lymphocyte antigen-4 (CTLA-35 

4) have begun to receive approval from the U.S. Food and Drug Administration (FDA) for advanced 36 

NSCLC. For patients without actionable mutations [i.e., epidermal growth factor receptor (EGFR) and 37 

anaplastic lymphoma kinase (ALK)], different immune checkpoint inhibitors are recommended in single-38 

agent or dual immunotherapy, or in combination with chemotherapy or bevacizumab, an anti-VEGF 39 

antibody, based on PD-L1 expression level on tumor cells (3). PD-L1 expression, as a regulator of 40 

antitumor response, an indicator of T cell infiltration into the tumor, and the target of immune checkpoint 41 

inhibitors, has been widely used as a predictive biomarker for immunotherapy in advanced NSCLC (4). 42 

Although immunotherapy has significantly improved the overall survival rate in advanced NSCLC when 43 

compared to conventional treatments, less than half of the patients respond (including those with >50% 44 

PD-L1 expression on tumor cells), and the 3-year survival rate is significantly lower in patients without 45 

actionable mutations (5). Due to the low prevalence of actionable mutations (6), novel combination 46 

regimens that involve immune checkpoint inhibitors are under investigation in clinical trials (3).   47 

 48 
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In conjunction with the clinical effort, quantitative systems pharmacology (QSP) models have been 49 

developed in the past few years, aiming to predict clinical benefits of treatment of interest in complex 50 

diseases like NSCLC. QSP integrates mechanistic knowledge from multiple disciplines, such as systems 51 

biology, (patho)physiology, and pharmacology, and investigates dynamic behavior of a system as a whole 52 

(7). Particularly in immuno-oncology, increasing number of QSP models was developed to study drug 53 

exposure-efficacy and exposure-toxicity relationships, predict efficacy, and identify predictive biomarkers 54 

for newly discovered drugs, including T cell engagers, immune checkpoint inhibitors (ICIs), and chimeric 55 

antigen receptor (CAR) T cells (8). The main goal is to assist drug and clinical trial designs, such as target 56 

and dose optimization, and to reduce the cost and time in drug development (9, 10). Among these efforts, 57 

our previously developed QSP platform, QSP-IO, has been applied to simulate tumor response to ICIs 58 

and their combinations with other types of treatment in early-stage NSCLC (11, 12), breast cancer (13–59 

15), colorectal cancer (16, 17), and hepatocellular carcinoma (18). Although recent QSP models provide 60 

reliable efficacy predictions for clinical trials at the population level, one of the major challenges remains 61 

in virtual patient generation, which aims to generate virtual patient cohorts that represent the 62 

interindividual variabilities observed in real-world data while falling within the physiologically plausible 63 

ranges (15). 64 

 65 

Although methods have been proposed to guide virtual patient generation, they have not been widely 66 

applied to large-scale models like QSP (19, 20). The focus of this study is therefore to investigate the 67 

performance of published virtual patient generation methods when integrated with our latest QSP-IO 68 

platform (15). Specifically, we applied two virtual patient generation methods: 1) probability of inclusion 69 

(21) to select virtual patients that statistically match patient data from the Cancer Research Institute (CRI) 70 

iAtlas, a platform storing results from immunogenomic analyses of TCGA data (22); and 2) compressed 71 

latent parameterization (23) to generate pharmacokinetic (PK) parameters based on pseudo-patient level 72 

data from population PK analysis of durvalumab, a PD-L1 inhibitor. For model validation, we first 73 

predicted the objective response rate of the generated virtual patients to durvalumab to compare with 74 

results from Study 1108 (NCT01693562), a phase 1/2 clinical trial in advanced NSCLC (24). In addition, 75 

we validated model-predicted immune cell densities against results from a digital pathology analysis, 76 

which is a quantitative analysis of histological images that provides spatial densities of immune markers 77 

of interest, such as CD4, CD8, and FoxP3, in different tumor regions (25–29).  78 

 79 

RESULTS  80 

Model parameterization  81 

Figure 1 illustrates the workflow of the present analysis. We utilized our previously developed QSP 82 

platform (15) that describes the cancer-immunity cycle (30) and recalibrated the cancer-type specific 83 

parameters using experimental and clinical data on NSCLC. Table 1 lists the recalibrated parameters with 84 

the data we used to estimate their values. As we aim to simulate a phase 1/2 clinical trial of durvalumab 85 

that enrolled patients with stage III NSCLC, data on stage III NSCLC were preferentially used when 86 

available. Overall, the model involves four main compartments: central, peripheral, tumor, and tumor-87 

draining lymph node. Ten modules were incorporated to investigate dynamics of cellular and molecular 88 

species, including cancer cells, T cells (i.e., effector, helper, and regulatory T cells), immune checkpoints, 89 

and durvalumab, in their corresponding compartments. Since majority of the clinical data for virtual 90 

patient generation and model validation (e.g., CD8 and CD4 T cell density) were collected from tumor 91 

samples, the model was best trained to describe immune cell dynamics in the tumor compartment, which 92 

is therefore the focus of the following analyses. With the recalibrated model, we first generated 30,000 93 

plausible patients, 629 of which were selected to form a virtual patient cohort. The selection process was 94 

guided by immune cell subset ratios (i.e., M1/M2, CD8/Treg, and CD8/CD4) estimated from 95 

immunogenomic analysis, as described below in Methods.  96 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.25.538191doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.25.538191
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

 97 

Figure 1. Paradigm of immunogenomic data-guided virtual patient generation and in silico clinical 98 

trial simulation using a mechanistic quantitative systems pharmacology model. The model is 99 

comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, which 100 

together describe the cancer-immunity cycle. nT, naïve T cell; aT, activated T cell; NO, nitric oxide; Arg-101 

I, arginase I; Treg, regulatory T cell; Teff, effector T cell; Th, helper T cell; Mac, macrophage; mAPC, 102 

mature antigen presenting cell. Cytokine degradation and cellular clearance are omitted in the figure. 103 
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Table 1. Non-small cell lung cancer (NSCLC)-specific parameters in the quantitative systems 104 

pharmacology model. MHC, major histocompatibility complex. 105 

Parameter Value Unit Description 

�_�1_����	
 0.007 1/day 
Rate of cancer cell proliferation in clone �1, 
estimated by the clinically observed tumor 

volume doubling time (31).  

�_�� 
1.5e11 cell 

Maximal tumor carrying capacity corresponding 
to a maximal tumor size of 10 cm. 

�� 5% dimensionless 

Volume fraction of vascular space in NSCLC 
tumor estimated by dividing pulmonary vessel 

volume (32) by the total lung tissue volume (33) 
and assuming vascular space in NSCLC is about 

29% of that in normal lung tissue (34). 

��  75% dimensionless 
Volume fraction of intracellular space in NSCLC 

tumor (35). 

�_��1 
176 molecule/µm2 

Average PD-1 density on T cells in the tumor 
(15). 

�_���1 250 molecule/µm2 

Average baseline PD-L1 density on cancer 
cells/antigen-presenting cells in the tumor in 

absence of IFNγ assuming it is 6-fold lower than 
the maximal density (15). 

�_��47 100 molecule/µm2 

Average CD47 density on cancer cells in the 
tumor estimated based on the experimentally 

observed increase of phagocytosis index when 
CD47-SIRP� interaction is blocked in NSCLC 

(36).  

�_�1_������ 92 dimensionless 
Number of NSCLC-specific T cell clones (11) 

that can recognize cancer cell clone �1. 

�_�0_������ 
100 dimensionless 

Number of tumor-associated self-antigen-specific 
T cell clones (11) that activate regulatory T cells. 

�_�1_�1 40 nmol/L 
Average binding affinity between NSCLC 

neoantigens and MHC molecules (11).  

�_����_��� 2,000 cell/(mL*day) 
Rate of MDSC recruitment into the tumor 

estimated by digital pathology analysis of NSCLC 
tumor samples (37). 

�_��_��� 200,000 cell/(mL*day) 
Rate of macrophage recruitment into the tumor 

estimated by digital pathology analysis of NSCLC 
tumor samples (38). 

�_�1_ �� 0.02 1/day 
Rate of M2-to-M1 macrophage polarization 
estimated by M1/M2 ratios calculated from 

TCGA data analysis (22, 39). 

��!� 21 dimensionless 
Number of tumor-draining lymph node 

surrounding the tumor (11). 
�_���� 16.9 µm Diameter of a single NSCLC cell (11). 

"�"	"�_	#��#�_�"$� 3.7 cm 
Pre-treatment tumor diameter estimated by the 
measured target lesion sizes at diagnosis in the 

OAK trial (40, 41). 
 106 

 107 
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Virtual patient generation  108 

We first confirmed that the virtual patient cohort statistically matched the immunogenomic data that 109 

guided the selection process. Figure 2A shows the estimated probability densities of the three immune 110 

subset ratios in: 1) the plausible patients, 2) the final virtual patient cohort, and 3) the immunogenomic 111 

dataset from iAtlas portal (22). We also compared the distributions of the three ratios between the 112 

observed data and the virtual patients in Figure 2B. When comparing the distributions using Kolmogorov-113 

Smirnov tests, the test statistics were 0.07, 0.06, and 0.06 with p-values of 0.30, 0.51, and 0.44, indicating 114 

that the virtual patient’s distributions were not statistically different from those of the immunogenomic 115 

data. Also shown in Figure 2A, the ranges of immune subset ratios in the plausible patients were wider 116 

than that in the immunogenomic data, which were narrowed by the selection process to generate the 117 

virtual patient population that better fitted to the data. Here, we use immune subset ratios instead of the 118 

proportions of immune cells in leukocytes as reported in iAtlas database because the proportions do not 119 

directly correspond to our model outputs, where immune cell densities are calculated in cells per cubic 120 

milliliter of tumor. In addition, we only selected data on M1/M2 macrophages, CD8, CD4, and regulatory 121 

T cells because other cellular types on the database (e.g., natural killer cells, B cells) were not explicitly 122 

represented in the current model. 123 

 124 

 125 

 126 

Figure 2. Probability density (A) and distribution (B) of model-predicted pre-treatment immune 127 

cell subset ratios in the virtual patient cohort compared with that calculated from immunogenomic 128 

data analysis. In the top panels, red lines represent the estimated probability density functions from 129 

immunogenomic data analysis; orange bars represent probability densities in the randomly generated 130 

plausible patient population; blue bars represent probability densities in the selected virtual patient cohort. 131 

In the bottom panels, 25th, 50th, and 75th percentiles are encoded by box plots with whiskers that define 1.5 132 

times the interquartile range away from the bottom or top of the box. Natural-log transformation was 133 

performed for the immune cell subset ratios during virtual patient generation. 134 

 135 

 136 

A. 

B. 
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Next, we validated the virtual patient cohort by comparing other pre-treatment characteristics of the 137 

virtual patients with observed data from clinical analyses. Figure 3 shows the probability densities of the 138 

pre-treatment tumor size, tumor doubling time, densities of CD8, CD4, Treg, and tumor-associated 139 

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and PD-L1 expression in the tumor. 140 

The median tumor size is 3.7 cm with a range between 1.5 and 9.9 cm, which is consistent with the 141 

measurement from the OAK trial for stage IIIB/IV NSCLC (40, 41). The tumor volume doubling time 142 

(TVDT) of virtual patients was calculated by ���� % &	 · log 2 /-log ��� . log ���/. &	 is the time 143 

interval between two CT scans that are usually performed at diagnosis and at the beginning of the 144 

treatment. ��� and ��� are the measured tumor volumes at the two time points. Assuming a &	 of 8 weeks, 145 

we estimated the mean TVDT to be 113 days with a median of 89 days in the virtual patients, which 146 

aligned with clinically measured TVDT of stage III NSCLC (31).  147 

  148 

 149 

 150 

Figure 3. Probability density of model-predicted pre-treatment variable distribution in the virtual 151 

patient cohort. Clinical data on tumor size were from the OAK trial (40, 41). CD8 and CD4 T cell 152 
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densities in NSCLC tumor were obtained from Kilvaer et al. (42). Average PD-L1 expressions on cell 153 

surface were estimated by dividing the model-predicted average PD-L1 density across all cells in the 154 

tumor by a theoretical maximal PD-L1 density of 1,770 molecules/μm2.  155 

 156 

The median densities of CD8, CD4, Treg, TAMs, and MDSCs were 2.6e7, 3.2e7, 5.4e6, 3.7e6 and 4.2e4 157 

cells/mL in the tumor, which were in agreement with multiple digital pathology analyses (37, 38, 43–45). 158 

In Figure 3 and Supplementary Figure 1, we compared the distributions of CD8 and CD4 density between 159 

virtual patients and clinical data from patients with stage III NSCLC, which were obtained from Kilvaer 160 

et al. (42). The conversion from a 2-D density from digital pathology analyses to the 3-D density was 161 

performed using equations presented in Mi et al. (26). Notably, the ranges of CD8 and CD4 T cell 162 

densities in the virtual patients were wider than that in the clinical data, which was due to the inherent 163 

uncertainty resulted from model parameterization and virtual patient generation. Nonetheless, the model-164 

predicted T cell subset densities likely fell within the physiologically reasonable ranges, as the 165 

proportions of CD8 and CD4 T cells ranged from 0% to 40% in iAtlas data (zeros were removed when 166 

calculating immune subset ratios to avoid singularities). Overall, the virtual patient cohort shows 167 

resemblance to real patient populations observed in clinical analyses of NSCLC. 168 

 169 

Variability in pharmacokinetic parameters 170 

According to the population PK (popPK) study of durvalumab, drug exposure can be affected by 171 

characteristics like body weight, serum albumin, and soluble PD-L1 level (46). Although most of these 172 

clinically measured characteristics are not present in the QSP model, the covariate effect on PK was 173 

included during reproduction of the PK data to be fitted with the QSP model. Since immunogenomic data 174 

used to select virtual patients above were not coupled with PK-related data, we independently generated 175 

PK parameters for the virtual patients via compressed latent parametrization (23). This optimization 176 

method added an additional term to the mean-squared-error cost function to limit deviations from the 177 

group-average model (see Methods), and thus allowed us to maintain the PK parameters within a 178 

physiologically reasonable range. 179 

 180 

Figure 4A shows the six PK parameters in the QSP model that were randomly generated to reflect the 181 

variability in PK of durvalumab. The median capillary filtration rate was 5.6e-6 L/s, which is in 182 

agreement with our previous analysis of the relationship between experimentally observed permeability 183 

and the molecular size of durvalumab (47). The median blood volume in the virtual patients is 5.8 liters, 184 

which agrees with the observed body weight distribution in the popPK study, given that the blood volume 185 

is approximately 70 mL/kg in adult humans. Further, the volume fraction of interstitial space in peripheral 186 

tissues available to durvalumab ranges from 3.5 to 7.9%, consistent with estimation in our previous study 187 

(48). The clearance rates (both linear and non-linear) and Michaelis-Menten constant for non-linear 188 

clearance are also consistent with the estimated values in the popPK study (46). The QSP model-predicted 189 

serum durvalumab concentration in the virtual patients is shown with clinically measured mean and 190 

standard deviation in Figure 4B. Consistent with clinical observations, durvalumab concentration reached 191 

steady state at approximately week 16 (49). Model-predicted peak and trough concentrations after the first 192 

dose and the trough concentration at steady state were comparable to clinical measurements from Study 193 

1108 and the ATLANTIC trial (Supplementary Table 1) (49).  194 
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 195 

 196 

Figure 4. (A) Distribution of fitted pharmacokinetic parameter values in the quantitative systems 197 

pharmacology model and (B) model-predicted durvalumab serum concentration following a flat-198 

dosing regimen of 750 mg every 2 weeks (Q2W). Green line represents the median model prediction; 199 

Orange lines represent the 5th and 95th percentiles. 200 

 201 

 202 

Predicting tumor dynamics during PD-L1 inhibition  203 

With the PK parameters randomly generated from the latent space, we simulated PD-L1 inhibition in the 204 

virtual patient cohort. Durvalumab was administered with 750 mg flat doses every 2 weeks (Q2W) once 205 

each virtual patient reached the preset initial tumor diameter ranging from 1.5 to 9.9 cm (Figure 3). 206 

Tumor response to the treatment was analyzed in two virtual patient subgroups divided based on PD-L1 207 

expression in the tumor with a threshold of 25%, which corresponds to the threshold used in Study 1108 208 

A. 

B. 
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(24). In the clinical setting, PD-L1 expression is the percentage of tumor cells that exhibit membrane 209 

staining by the reagent (24). According to our model prediction, the majority of the cells that express PD-210 

L1 in the tumor were cancer cells, and since the PD-L1 density in the model was defined as the average 211 

PD-L1 level on cells in the tumor, we approximated the PD-L1 expression by dividing the model-212 

predicted PD-L1 density by a theoretical maximum level of 1,770 molecules/μm2. The maximum level 213 

was estimated by the in vitro measurements of PD-L1 density on mature dendritic cells (50, 51). Due to 214 

the lack of data on PD-L1 expression in NSCLC tumors, we estimated the average baseline PD-L1 215 

expression (Table 1) so that the proportion of virtual patients that fell within each subgroup matched that 216 

reported by Study 1108 (24). 217 

 218 

Figure 5 shows the percentage change of tumor size and the best overall tumor size change in the two 219 

patient subgroups. Although the model predicted a faster median tumor growth for non-responders with a 220 

PD-L1-high tumor, responders in the PD-L1-high group showed a faster median tumor size reduction 221 

during early stage of the treatment. Specifically, 22.6% of the responders in the PD-L1-high group 222 

responded by week 6, as opposed to 6.1% in the PD-L1-low group. According to RECIST 1.1, the model 223 

predicted an objective response rate (ORR) of 18.6% with a 95% bootstrap confidence interval of (13.3, 224 

24.2)% in the virtual patient cohort. In PD-L1-high and -low groups, ORRs were predicted to be 23.8 225 

(16.3, 32.7)% and 12.0 (5.5, 20.2)%, respectively. The increase in ORR in the PD-L1-high group was 226 

potentially due to the positive correlation between PD-L1 expression and T cell infiltration 227 

(Supplementary Figure 2), which was also clinically observed (43). Comparing to the model-predicted 228 

ORRs, the clinically reported ORRs in Study 1108 (21.8% and 6.4% for PD-L1 high vs. low) fall within 229 

the model-predicted 95% confidence intervals, while the difference in predicted ORRs between the two 230 

subgroups is narrower than that in the clinical trial. Our ORR prediction may be further improved by 231 

including new lesion formation in the model, since a large portion of the patients with low PD-L1 232 

expression in Study 1108, despite having a >30% tumor size reduction, was categorized as non-responder 233 

due to detection of new lesion(s) (24).  234 

 235 

To further examine the performance of the virtual patient generation method, we simulated the same dose 236 

regimen of durvalumab in virtual patients selected by different combinations of immunogenomic data. 237 

Supplementary Table 2 shows that model-predicted ORRs were similar among virtual patient populations 238 

selected by any data combinations. This is likely because the parameter distributions that generate 239 

plausible patients were already manually calibrated to NSCLC data (see Methods). However, when we 240 

selected virtual patients by data on lung adenocarcinoma (LUAD) or lung squamous cell carcinoma 241 

(LUSD) separately, the model predicted higher ORR in LUSC with a median CD8/Treg ratio almost 242 

twice as high as that in LUAD, which aligned with clinical findings (52). This observation suggests that 243 

the virtual patient generation method is capable of generating virtual patient populations that fit to 244 

particular patient subgroups while reducing the inherent uncertainty (as seen above in Figure 2A). 245 

 246 

Next, we investigated the correlations between response status and PK variables, including the peak 247 

(����), trough (��	
) durvalumab concentration, and area under concentration curve (AUC) at early time 248 

points and steady state (week 16), as well as drug accumulation indices. Supplementary Figure 3 shows 249 

that the peak durvalumab concentration and AUC from day 0-14, as well as the peak concentration at 250 

steady state, were significantly higher in responders. We further divided the virtual patient into 5 251 

subgroups with increasing level of each PK variable and calculated the ORR of each subgroup in 252 

Supplementary Figure 4. Interestingly, the ORR increased as ����  and AUC of the first dose (day 0-14) 253 

increased, with about a 14% difference in ORR between the 2 subgroups with the highest and the lowest 254 

level of ����,� or 01�0-14 . Nonetheless, a reverse trend, even though non-significant, was observed 255 

between ORR and ����,� in patients with urothelial carcinoma from Study 1108 (49).  256 

 257 
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 258 

Figure 5. Percentage change in tumor size (A,B) and the best overall tumor size change (C,D) in 259 

PD-L1-low (A,C; N=276) and PD-L1-high (B,D; N=353) virtual patients during in silico clinical 260 

trials of durvalumab. R, responders; NR, non-responders; PD, progressive disease; SD stable disease; 261 

PR/CR, partial/complete response. 262 

 263 

 264 

To investigate the performance of potential predictive biomarkers in NSCLC, we compared their 265 

distributions between responders and non-responders from the overall virtual patient cohort. Figure 6 266 

shows that responders have significantly higher CD8/4 T cells, PD-L1 level, CD8/Treg and CD8/CD4 267 

ratios, number of NSCLC-specific T cell clones (TCC), and significantly lower MDSCs. Similar 268 

correlations between clinical response and CD8 T cell density, CD8/Treg and CD8/CD4 ratios were 269 

observed in a clinical trial of PD-1 inhibition in NSCLC (43). In addition, the number of NSCLC-specific 270 

T cell clones was found to be correlated with tumor mutational burden (53), which is a known predictive 271 

biomarker for immune checkpoint inhibition in NSCLC (54). Next, we divided virtual patients into 5 272 

subgroups with increasing level of each biomarker and calculated the ORR of each subgroup. Figure 7 273 

confirmed that ORR increased as the biomarkers identified above increased (or decreased in case of 274 

MDSC). However, the disease control rate, which is defined as percentage of patients with 275 

complete/partial response and stable disease, increases only when CD8/Treg, CD8/CD4, and TCC 276 

increase or when MDSC decreases.  277 

 278 

To study the combined effect of the predictive biomarkers, we trained a random forest model using pre-279 

treatment CD8/4 T cells, PD-L1 expression, CD8/Treg, CD8/CD4 ratios, MDSC density, and TCC (see 280 

Methods). As a prerequisite, we calculated the correlation matrix to make sure that the variables were not 281 

strongly correlated (Supplementary Figure 5A). The variable importance of all pre-treatment biomarkers 282 

is shown in Supplementary Figure 6A, with CD8/Treg ratio, PD-L1 expression, CD8 density, and TCC 283 

Virtual patients 

Virtual patients 
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identified as top important variables by the random forest model. With ROC analysis, we selected 284 

thresholds for the four predictive biomarkers that achieved a sensitivity of 80% (Figure 8A). The 285 

thresholds for CD8/Treg ratio, PD-L1 expression, CD8 density, and TCC were 4.1, 21%, 151 cells/mm2, 286 

and 72 (with specificity of 47%, 35%, 37%, and 34%), respectively. Here, we converted the CD8 density 287 

from 3-D to 2-D that corresponds to the outcome of digital pathology analysis (26). Further, we 288 

performed similar analyses on on-treatment biomarkers. We selected CD8/Treg ratio and CD8 density at 289 

the end of first treatment cycle (day 14), which were identified by the random forest model as the two 290 

most important variables (Supplementary Figure 5B and 6B). The thresholds, according to ROC analysis 291 

in Figure 8B, were selected to be 5.1 and 176 cells/mm2 (with specificity of 52% and 41%). Overall, 292 

CD8/Treg ratio showed the best performance with the highest specificity and area under ROC curve 293 

(Figure 8). In comparison, Kim et al. analyzed tumor-infiltrating lymphocytes in 33 primary lung lesions 294 

from advanced NSCLC and found that a Treg/CD8 ratio cutoff of 0.25 achieved a sensitivity and 295 

specificity of 82.6% and 65.4% in predicting response to anti-PD-1 treatment (43). In a meta-analysis, Li 296 

et al. also identified tumor PD-L1 expression and mutational burden as predictive biomarkers (both with 297 

specificity of about 30% when sensitivity is 80%) for anti-PD-(L)1 treatment in NSCLC (55, 56). 298 

 299 

 300 

 301 

Figure 6. Comparison of pre-treatment variable distributions between responders (R) and non-302 

responders (NR). p-values were calculated by Wilcoxon test.  303 
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 304 

 305 

Figure 7. Effect of pre-treatment variables on objective response. For each variable of interest, virtual 306 

patients are sorted by the variable amount in ascending order, and evenly divided into 5 subgroups. The 307 

response status of each subgroup is plotted against the corresponding median variable amount. Blue 308 

represents partial or complete response. Green represents stable disease. Red represents progressive 309 

disease. 310 

 311 

 312 
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 313 

Figure 8. ROC analysis of (A) pre-treatment and (B) on-treatment predictive biomarkers for PD-314 

L1 inhibition in NSCLC. Areas under curve (auROC) were 0.62, 0.63, 0.71, 0.67 for pre-treatment PD-315 

L1 expression, CD8 T cell density, CD8/Treg ratio, and NSCLC-specific T cell clones (TCC), 316 

respectively; auROC were 0.76 and 0.69 for on-treatment CD8/Treg ratio and CD8 density at the end of 317 

first treatment cycle (day 14). 318 

 319 

To explore dynamics of immune cells during immunotherapy, we visualized the time-dependent profiles 320 

of immune cells in the central (Supplementary Figure 7) and tumor compartment (Supplementary Figure 321 

8). Supplementary Figure 7 shows that all activated T cell subsets in blood, including CD8, CD4, helper T 322 

cells, and Tregs were increased by durvalumab in responders, while CD8/Treg and CD8/CD4 ratios 323 

decreased over time in responders. On the contrary, immune cells in the non-responders had opposite 324 

dynamics when compared to the responders. For immune cells in the tumor, Supplementary Figure 8 325 

shows that activated T cell subsets also increased in responders during PD-L1 inhibition. However, unlike 326 

T cell ratios in blood, CD8/CD4 ratio increased in responders, and CD8/Treg ratio was transiently 327 

increased by durvalumab in responders for the first two months and did not drastically change from the 328 

baseline level in the long term. Furthermore, M1/M2 ratio decreased and MDSC density increased in 329 

responders, suggesting that TAMs and MDSC may partly contribute to resistance to immunotherapy in 330 

NSCLC (57). Sensitivity analysis (Supplementary Figure 9) also suggested that recruitment of MDSC, 331 

Th-to-Treg differentiation, and M2 polarization could be potential targets of drugs that can be combined 332 

with durvalumab, as parameters related to these mechanisms were among the most influential ones to 333 

tumor size at the end of durvalumab treatment.  334 

 335 

DISCUSSION  336 

In the present study, we revisited PD-(L)1 simulation in NSCLC with the latest QSP model expansion and 337 

attempted to address the challenge on generating heterogeneous yet physiologically realistic virtual 338 

patients, which was raised in our previous studies (13–15). In terms of model structure, we utilized 339 

previously developed QSP model of TNBC and incorporated an additional source of IFNγ in the tumor 340 

microenvironment (see Methods). In addition, baseline values of cancer type-specific parameters were 341 

recalibrated by experimental and clinical data on stage III NSCLC. Notably, PD-L1 in the model 342 

represents the average expression on all tumor cells, including cancer cells and immune cells, that can 343 

interact with PD-1 on activated T cells and TAMs to inhibit Teff-mediated cancer killing and TAM-344 

mediated phagocytosis. However, PD-L1 on different cell types may have different roles in the tumor 345 

microenvironment (58), and thus can be separately modeled in future studies. In addition, PD-L1 346 

expression is upregulated only by IFNγ in the current model, so we assume a baseline PD-L1 expression 347 

A. B. 
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to match the percentage of virtual patients in the PD-L1-high and PD-L1-low groups as observed in the 348 

clinical trial. It should be noted that multiple inflammatory signaling pathways are involved in PD-L1 349 

upregulation, which results in the clinically observed heterogeneous PD-L1 expression (59). Additional 350 

mechanistic details can be incorporated into the model when sufficient experimental data become 351 

available for model calibration. 352 

 353 

One of our main focuses is to improve our approach to virtual patient generation. In previous studies, we 354 

randomly generated deviations around baseline parameter values assuming uniform, log-uniform, or log-355 

normal distribution, and manually calibrated the distribution statistics (e.g., standard deviation, upper and 356 

lower boundaries) so that the summary statistics in virtual patients matched those reported by clinical 357 

analyses (15). This is a time-consuming process, which becomes even more challenging when fitting to 358 

multi-dimensional data. The probability of inclusion proposed by Allen et al. allowed us to select virtual 359 

patients that statistically matched the observed data from the randomly generated plausible patients (21), 360 

and iAtlas portal provided cancer-specific patient-level data for this method. However, unlike the model 361 

of cholesterol metabolism presented by Allen et al., physiologically plausible ranges for the present QSP 362 

model variables are not well established due to the insufficient biological understanding of the tumor 363 

microenvironment. Therefore, we could not apply the additional step to optimize plausible patients via 364 

simulated annealing before calculating the probability of inclusion, which would further improve 365 

confidence in model predictions by constraining virtual patients within the physiologically reasonable 366 

ranges (21). Comparing to the results from Allen et al., similar proportion (2-3%) of plausible patients in 367 

this study was included in the final virtual patient cohort, which depended on the data dimensionality and 368 

the initial distribution of plausible patients (21, 60).  369 

 370 

Besides the three immune subset ratios that were used to select virtual patients in the present analysis 371 

(Figure 2), there are other patient characteristics, such as cancer cell growth rate, T cell clonality, and 372 

binding affinity between neoantigen and MHC molecules, which also differ among patients but cannot be 373 

directly obtained from the immunogenomic data. In future analyses, machine learning algorithms can be 374 

applied on multi-omics data to predict model-related parameter values (61–63). Importantly, we have 375 

demonstrated here that the virtual patients generated by the QSP model and selected by the three immune 376 

subset ratios were able to capture the inter-patient heterogeneity while being consistent with unseen 377 

digital pathology data on immune cell densities in NSCLC tumor.  378 

 379 

To account for variability in PK of durvalumab and predict its intratumoral concentration, we fitted PK 380 

parameters in the QSP model to the data simulated from the time-dependent popPK model (46) via 381 

compressed latent parameterization. This method not only considers the covariance between parameters 382 

but also minimizes parameter deviations from the group-average value when there is a lack of parameter 383 

identifiability (23). One of the limitations, however, is that the popPK data and the immunogenomic data 384 

were collected from two different patient populations, so the covariances between PK-related 385 

characteristics and immunogenomic data were not accounted for during virtual patient generation. In 386 

addition, as the patient data in iAtlas portal were not body weight dependent, we simulated 750 mg flat 387 

dosing instead of weight-based dosing. 388 

 389 

With the virtual patients that have shown resemblance to real patient data, we investigated if the model 390 

could make reliable efficacy prediction for durvalumab in stage III NSCLC. Following the same dose 391 

regimen in Study 1108, we simulated 750 mg doses every 2 weeks and divided virtual patients into two 392 

subgroups based on their PD-L1 expression on tumor cells. The model predictions fell within the 393 

clinically reported confidence intervals and confirmed that patients with high PD-L1 expression have a 394 

higher ORR than the PD-L1-low group. It should be noted that appearance of new lesions (e.g., 395 

locoregional and distant metastases) is not a rare event especially during treatment of late-stage NSCLC 396 

(24, 64), which would be categorized as progressive disease regardless of the tumor size change. New 397 

lesions are most likely seeded before therapy begins and grow to a detectable size during the treatment 398 
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(65, 66). This stochastic process, which may require a hybrid modeling technique or approximation 399 

methods to integrate into the QSP model (67, 68), may be addressed if relevant data become available in 400 

the future. 401 

 402 

 403 

MATERIALS AND METHODS 404 

Overview of the QSP modeling platform for immuno-oncology (QSP-IO) 405 

The QSP model comprises four main compartments: central (C), peripheral (P), tumor (T), and tumor-406 

draining lymph node (LN). These compartments represent the circulating blood, lumped peripheral 407 

tissues/organs, tumor microenvironment, and lumped tumor-draining lymph nodes, respectively. Ten 408 

modules were involved in this study, which described dynamics of cancer cells, T cells (i.e., effector, 409 

helper, and regulatory T cells), antigen-presenting cells, neo/self-antigens, therapeutic agent, immune 410 

checkpoints, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). 411 

Cancer type-specific parameters were reparametrized to NSCLC based on experimental data, 412 

preferentially from stage III NSCLC if available (Table 1). In addition, we modified our previous 413 

assumption so that the main source of interferon-gamma (IFNγ) was not limited to activated CD4 helper 414 

T cells. Instead, we assumed that activated CD8 T cells also produced IFNγ with a rate 3 times higher 415 

than CD4 T cells (69). For cancer cell growth, we assumed logistic growth for NSCLC with a constant 416 

maximum carry capacity of 10 cm (Table 1). Other mechanisms remained the same as in our previous 417 

analysis, which was elaborated in (15). 418 

 419 

Overall, there are 255 parameters, 141 ODEs, and 40 algebraic equations (model rules with repeated 420 

assignments). Model simulations were performed using SimBiology Toolbox in MATLAB R2020b 421 

(Mathworks, Natick, MA) with ODE solver, SUNDIALS. Each simulation started from a single cancer 422 

cell, and tumor volume was calculated at each time step via Equation 1. ������ , ������ , and ������ are the 423 

total number of cancer cells, T cells, and TAMs; �����, ������ , and ������ are volumes of single cancer cell, 424 

T cell, and macrophage; ��  and ���� are the numbers of dying cancer cells and exhausted T cells; and 425 

��,� is the volume fraction of intracellular space in NSCLC tumor. During postprocessing, tumor diameter 426 

was estimated assuming a spherical tumor. 427 

 428 

�� %
1
��

-�����-������ 2 ��/ 2 ������-������ 2 ����/ 2 ������������/ 

(Equation 1) 429 

 430 

Virtual patient generation  431 

To account for interindividual variability that results in the heterogeneous tumor response to 432 

immunotherapy, we selected 30 out of the 255 model parameters, which are known to differ among 433 

patients, and generated random deviations around their baseline values using Latin-hypercube sampling 434 

(LHS). The distribution statistics (e.g., standard deviation, upper and lower boundaries) were estimated 435 

based on available clinical observations and experimental data on NSCLC. In theory, each randomly 436 

generated parameter set represents a virtual patient (70). However, to avoid confusion, we define the 437 

virtual patients generated at this step as plausible patients. Notably, each patient was randomly assigned a 438 

preset initial tumor diameter (see "�"	"�_	#��#�_�"$� in Table 1) (40, 41). When the tumor size reached 439 

the preset value, the model variables were saved and treated as the pre-treatment characteristics for the 440 

corresponding patient. At this step, we generated 30,000 plausible patients. 441 

 442 

To generate a virtual patient cohort whose characteristics statistically match the real patient population, 443 

we adapted the probability of inclusion proposed by Allen et al. (21). We first explored the “Immune Cell 444 

Proportions” data from the “Immune Feature Trends” module in iAtlas portal (https://isb-445 
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cgc.shinyapps.io/shiny-iatlas/) by selecting TGCA subtypes: lung adenocarcinoma (LUAD) and lung 446 

squamous cell carcinoma (LUSC), which are the two major subtypes of NSCLC (22, 71). Then, we 447 

downloaded the proportions of CD8, CD4, and regulatory T cell (Treg), M1 and M2 macrophages from 448 

analyses of the two TCGA subtypes; and we generated a 3-dimensional patient-level data containing 449 

ratios between CD8 T cells and Tregs, CD8 and CD4 T cells, and M1 and M2 macrophages, all of which 450 

have corresponding QSP model species. Data points that contained zero value(s) were removed to avoid 451 

singularities. Moreover, as the TCGA data were collected from untreated patients, they correspond to the 452 

pre-treatment characteristics predicted by the model (72). Finally, we calculated the probability of 453 

inclusion via Equation 2, which is the conditional probability of including a plausible patient into the final 454 

virtual patient cohort (i.e., �-3/ % 1) given the model prediction �-3/ % �.  455 

 456 

�-�-3/ % 1|�-3/ % �/ % 5
6���-�/
6�	�-�/

 

(Equation 2) 457 

 458 

Here, � is a logical function that equals to 1 if the plausible patient 3 should be included and 0 if 459 

otherwise, and � represents the QSP model that predicts time-dependent profile of model variables for 460 

the plausible patient 3. In this study, we focused on the model-predicted pre-treatment ratios that 461 

corresponded to the data from iAtlas (i.e., CD8/Treg, CD8/CD4, and M1/M2). Additionally, 6���-�/ and 462 

6�	�-�/ are the probability density estimate for model-predicted ratios, �, in the observed data and the 463 

plausible patients, respectively. Probability densities were estimated by 6-�/ % �

�����
 where ��-�/ is the 464 

volume of an N-dimensional hypersphere with radius defined by the distance to the N-th nearest-neighbor 465 

of �. ! was typically chosen from 5 to 10 in this study. The constant 5 was optimized by the simulated 466 

annealing algorithm to minimize the average two-sample Kolmogorov-Smirnov test statistic when 467 

evaluating the difference between the empirical cumulative distribution functions of the observed data 468 

from real patients and the predicted values from selected virtual patients (21). With the optimal 5, virtual 469 

patients were selected based on the inclusion probability to generate the final virtual patient cohort.  470 

 471 

In silico clinical trial  472 

To account for the interindividual variability in pharmacokinetics of durvalumab, we applied compressed 473 

latent parameterization proposed by Tivay et al. (23) to generate PK parameters for the virtual patients. 474 

Since this method required patient-level PK data for durvalumab, which were not available from 475 

published studies, we first generated time-dependent durvalumab PK of 400 pseudo-patients based on the 476 

population PK (popPK) study by Baverel et al. (46). Specifically, we assumed log-normal distribution for 477 

patient characteristics, such as serum albumin level, body weight, and soluble PD-L1 level, and we 478 

estimated the standard deviations based on the reported means and ranges. For categorical variables, 479 

including sex and Eastern Cooperative Oncology Group (ECOG) performance status, we assumed 480 

binomial distribution with probabilities estimated by the summary statistics of corresponding patient 481 

characteristics. Based on the estimated distributions, we randomly generated characteristics of 400 482 

pseudo-patients and calculated values for linear clearance, ��, maximum elimination rate, ���� , and 483 

volumes of the two compartments, �� and ��, in the popPK model using algebraic equations provided by 484 

Baverel et al. (46). Intercompartmental clearance, 7, was assumed to be 0.476 L/day for all patients. 485 

Since time-dependent profile of the patient characteristics were not available, we assumed they were 486 

constant over time. With the following ODEs for the two-compartment popPK model, we simulated the 487 

durvalumab concentration profile in the 400 pseudo-patients (46).  488 

 489 

��
�
�	

809� % 7 · -809� . 809�/ . �� · 809� . ����

809�
809� 2 :�

 

(Equation 3) 490 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.25.538191doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.25.538191
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

��

�
�	

809� % 7 · -809� . 809�/ 

(Equation 4) 491 

 492 

The first step of compressed latent parameterization is to find the “group-average” model defined by 493 

3; % arg min�AB . YD-3/A
�

�
, where B is a matrix storing data from all patients and YD-3/ is the 494 

corresponding model predictions (23). Here, due to the high variability in durvalumab PK, we defined B 495 

as an Nt-by-1 vector storing the median durvalumab concentration in the 400 pseudo-patients at each time 496 

point (Nt is the length of the time vector), and YD-3/ as an another Nt-by-1 vector storing the QSP model-497 

predicted durvalumab concentration given an input PK parameter set 3. We fitted six PK parameters, 498 

which were capillary filtration rate, blood volume, volume fraction of interstitial space in peripheral 499 

tissues available to durvalumab, linear and maximum non-linear clearance rates, and Michaelis-Menten 500 

constant for non-linear clearance, using MATLAB function, fmincon. Then, we randomly generated 501 

k=500 random local deviations around the group-average model, which was stored in a 6-by-k matrix E. 502 

The corresponding changes in model-predicted serum durvalumab concentration were stored in a Nt-by-k 503 

vector BD�. Through singular value decomposition of the covariance matrix F % BD�E� % GHI�, we got a 504 

6-by-6 matrix I whose columns are sorted orthogonal directions of maximum covariance in the parameter 505 

space (23). Further, we fitted the six PK parameters in the QSP model to the pseudo-patient data 506 

generated above via 3	 % arg min�AY� . YD-3/A
�

�
2 JA-3 . 3;/� IA

�
, and a latent parameter space was 507 

constructed via K� % L�I . 3;�I, where L is a 6-by-400 matrix storing all fitted parameter sets. Finally, 508 

new PK parameter sets were randomly generated from the latent space via 3���
% IM� 2 3; for the virtual 509 

patients, where the 6-by-1 vector M� was randomly sampled from the latent space K assuming 510 

independent uniform distribution for each dimension of the latent parameter space. 511 

 512 

With the final virtual patient cohort, we simulated their tumor response to durvalumab treatment starting 513 

from the time point when the tumors reached their preset initial diameter (i.e., pre-treatment tumor size), 514 

following the same settings in a phase 1/2 clinical trial of durvalumab (NCT01693562) (24). 10 mg/kg 515 

durvalumab was administered every 2 weeks (Q2W) via a SimBiology dose object. Tumor diameters 516 

were recorded at 6, 12, and 16 weeks, and every 8 weeks thereafter, corresponding to the frequency of 517 

pre-scheduled tumor size measurement in the clinical trial. Clinical response was classified by RECIST 518 

v1.1 (73) with a minimum duration of stable disease of 6 weeks. 519 

 520 

Statistical analyses 521 

For comparison between model-predicted ORRs and clinical observation, bootstrap sampling was 522 

performed to resample the virtual patient (sub)population with a sample size matching the number of 523 

patients in the corresponding subgroups (i.e., PD-L1 high/low) in Study 1108. The bootstrap median and 524 

the 95 percentile confidence intervals were then calculated. Wilcoxon tests were conducted using 525 

ranksum function in MATLAB 2020b. 526 

 527 

Random forest models were trained on potential predictive biomarkers of interest to predict response 528 

status using caret and randomForest packages in R 4.2.3. For each model, 500 trees were trained, and 529 

each tree was trained on two-thirds of the data points. The out-of-bag error is defined as the error rate of 530 

each tree in predicting the data excluded by the training set (i.e., out-of-bag samples). The Mean Decrease 531 

Accuracy for each variable is the average decrease of model accuracy in predicting outcomes of the out-532 

of-bag samples when a particular variable is excluded from the model, which is reported as variable 533 

importance. Receiver Operating Characteristic (ROC) analyses were performed by perfcurve function in 534 

MATLAB 2020b. 535 

 536 
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Sensitivity analysis was performed using Morris screening/elementary effects method (74, 75) with a 11-537 

level grid and a step size Δ of 1/10 for the 30-dimensional hypercube [0,1]30 (i.e., 30 input parameters 538 

varied during virtual patient generation). Actual values of the 30 parameters were calculated based on 539 

their distributions by treating the sampled points from the hypercube as quantiles (75). 1000 trajectories 540 

were randomly generated at the beginning. Trajectories with points fell outside the hypercube, as well as 541 

those with points containing 0% and 100% quantiles for parameters with lognormal distribution, were 542 

disregarded. Overall, 34 successful trajectories were plugged into the model to simulate tumor sizes at 543 

day 400 of durvalumab treatment, which were used to calculate the elementary effects (EEs). Finally, the 544 

variance O� and the mean absolute values P  of the EEs were estimated for each parameter (75).  545 
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